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1. INTRODUCTION

If a function F(t) is regular at t = 0, then it has a Maclaurin expansion
of the form

00

F(t) = L Intn,
n=O

(1.1)

which will converge within the so-called circle of convergence, say I t I < R.
If, as Darboux [1] assumed, R is finite, then F(t) must have at least one
singularity on the circle I t I = R. Darboux showed that if F(t) had only
a finite number of singularities on the circle of convergence, all of which
were algebraic in nature, then the asymptotic behavior of In could be
obtained as n ---+ 00.

In this paper we shall investigate an extension of Darboux's result. We
assume, as did Darboux, that on the circle of convergence F(t) has only
a finite number of singularities. Anticipating the final result, it is possible
to assume a canonical form in which F(t) has one and only one singularity
on the circle of convergence, with the more general result being obtained by
adding the contribution of each singularity. If the singularity occurs at
t = b, then the substitution t = bt' locates the singularity at t' = 1. There
fore, using the canonical form, it is assumed that F(t) has a singularity at
t = I, and is regular within and on the contour C shown below. In a neigh
borhood of t = 1, F(t) is assumed to have the form

F(t) = (1 - t)iI-l (log(I - t))1l. G(t) (1.2)

where" and f-' are fixed complex numbers, G(t) is regular at t = I, and
10g(1 - t) has its principal value, which is real when t is real and <1. This
certainly generalizes the Darboux condition in which the singularity of F(t)
at t =, 1 was restricted to be of the form (1 - t),\-I.
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FIG. 1. Contour C : Il > O.

2. PRELIMINARIES

In this paper the asymptotic expansions obtained are not simply power
series in n-1• Instead they involve n in a more complicated manner and must
be interpreted in the generalized sense of Erd61yi and Wyman [2].

Let {!Pm} be an infinite sequence of functions !Pm(n), where n is a large
positive parameter. We say that {!Pm} is an asymptotic sequence if, for all m,

as n -+ 00. (2.1)

Two functions F(n) and G(n) are said to be asymptotically equal relative
to {!Pm}, written

if, for every fixed m

as n -+ 00,

as n -+ 00.

(2.2)

(2.3)

The formal series L Fm is said [2] to be an asymptotic expansion of the
function F with respect to the asymptotic sequence {!Pm}, in symbols

if for every value of M,

M

F- L Fm = O(!PM)
m~O

as n -+ 00,

as n -+ 00.

(2.4)

(2.5)
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Two functions having the same asymptotic expansion are asymptotically
equal, and the converse is also true.

Returning to (1.1), we have by Cauchy's theorem

27rifn = Ie t-n- 1 F(t) dt,

= f t-n - 1 F(t)dt + f t-n- 1 F(t) dt. (2.6)
Itl~l+B It-l!=3

The path of integration on the large circle begins at I + 0, goes around the
origin in the positive sense, and ends at (1 + 0) e21T', whereas the path of
integration on the small circle begins at (1 + 0) e21Ti , goes around t = 1 in
the negative sense, and ends at 1 + O.

In (2.6), the number 0 will no longer be considered to be fixed, and will
be chosen to be

On the circle I t I = 1 + On, we assume that F(t) satisfies

(2.7)

F(t) = O(nS), as n ---+ 00, (2.8)

for some fixed real number s. A simple estimation then gives

f t-
n
-

1
F(t) dt = 0 ( (1 + ~;/ 1/2)n)'

I tl ~1+3n n

= O(exp(-E vn»,
for some fixed E > O. This will imply

as n -4- 00,

as n -4- 00,

f t-n- 1F(t) dt ~ 0;
I tl-l+3n

{rpm(n)} as n -4- 00, (2.10)

as long as {rpn} is any asymptotic sequence for which

exp(_m1 / 2) ~ 0; {rpm(n)} as n -4- 00. (2.11)

Anticipating the final result, it will be assumed that {rpm} is such an asymptotic
sequence. Under these circumstances, we have

In ~ _,_' f t-n- 1 F(t) dt;
27T It-II =3n

as n -4- 00, (2.12)

where the path of integration on I t - 1 [ = On is now orientated in the positive
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direction. The asymptotic behavior of In will hence be determined by the
asymptotic behavior of the integral

In = _1_' f t-n- 1 F(t) dt.
27T 1t-II-5..

(2.13)

Before we begin the study of the behavior of the integral In, we shall
digress briefly to discuss the function

i f(O+1
M(A, JL, n) = 27T 00 (-t)"-1 (log (-t»" r(n+l)t dt, (2.14)

where the loop contour of integration and the cuts in the t-plane are illustrated
below. By a modification of a result proved in [6], we can show that

(-log (11 + 1»" [00 (JL) Dk[r-1(1-A)] k]
M(A, JL, 11) '" (11 + 1)" k~ k (-log (n + I»k ; {(log (n + 1))- }

(2.15)

as n -+ 00, where Dk = dk/dA".

G
FIG. 2. t-plane.

This result is ultimately used in a slightly different form. Let Pm(w) be
the polynomials defined by

G(t + 1) exp 1- ~ wt [ 2(log (t ~ 1) - t) ]! = f Pm(w) t m, (2.16)
t m=O

where G(t) is the function given in (1.2).
An explicit expression for Pm(w) is given by

Consider the integral

Jm = 2~ I"ft (_t)A+m-l (log(-t»" Pm«n + 1) t) e-(n+l)t dt, (2.18)
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where Yn is the path of integration which traverses on the circle I t I = On in
the positive direction, and begins and ends on the positive half of the real
axis. The polynomials Pm«n + I)t) may be written

m

Pm«n + 1) t) = I pin + 1)8 t 8

8~O

where P8 is a fixed number. Hence

(2.19)

Jm = ~ pin + 1)8 2~ f (_t),,+m+8-1 (log(-t))" e-(n+!lt dt. (2.20)
3=0 Yn

Since the error incurred by extending the circular paths of integration to
infinite loops is O(exp(-En1/ 2)), (cf. [6, (2.8)]), we have in view of (2.11)

m

Jm ~ I pin + 1)' M(>" + m + s, /-" n);
S~O

as n -+ 00, and hence by (2.15)

(2.21)

as n -+ 00, where

Jm r-..I «~o~nI;+~)" L~o (~)(-Iog(n + l))-k A k(>.., m); {(log(n + I))-k}]

(2.22)

m

Ai>", m) = I P8Dk[r-1(I - >.. - m - s)]. (2.23)
8~O

3. ASYMPTOTIC EXPANSION OF fn

Returning to (2.13), (t - 1) is replaced by t to obtain

In = 2~ t (t + l)-n-l F(t + 1) dt,

where the path of integration Yn is described in (2.18).

(3.1)

THEOREM. IfF(t) is regular within and on the contour C shown in Fig. 1,
and ifF(t) satisfies the conditions (1.2) and (2.8), then

OC)

fn r-..I I (-I)m Jm ;
m=O

l (log n)" I
I nHm I as n -+ 00, (3.2)

where the Jm are functions ofn given by (2.18).
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Proof Substitution of (1.2) into (3.1) yields

In = 2~ t (-t)H (log(-t))" G(t + l)(t + l)-n-l dt. (3.3)

The factor G(t + 1) exp{-(n + l)[log(t + 1) - t]} is written as

G(t + 1) exp{ -(n + l)[log(t + 1) - t]}

= G(t + 1) exp 1- ~ wt [2(log(t ~ 1) - t) J! (3.4)

where

w = (n + l)t. (3.5)

The expression on the right side of (3.4) will have the convergent expansion
(2.16) as long as

wt = 0(1), as n-+ 00. (3.6)

Since wt = (n + 1) t 2, wt = 0(1), as n -+ 00, will certainly be satisfied
within and on I t I = Kjn1 / 2, where K is any fixed positive number. Hence,
for any fixed integer N;?: 0, (2.16) can be written as

where RN is regular at t = 0, and for which

as n -+ 00, (3.8)

providing I t I ~ Kjn1/ 2• Coupling the results (3.4) and (3.7) together gives

N

In = L (_l)mJm + EN
m=O

where Jm is given by (2.18) and

(3.9)

EN = _t_' J (-t)~-l (log(-t))1L RNe-ln+llt dt. (3.10)
27T Yn

It is always possible to choose the integer N large enough so that
Re(A + N + 1) > 0, and therefore the regularity of the integrand will allow
the replacement of the circular path of integration by two straight lines
joining t = 0 to t = 8, one on the top side of the cut in the t-plane, and the
other on the lower side of this cut.



THE METHOD OF DARBOUX

o

FIG. 3. The path of integration L.

Hence

I EN I = 0 (n(N+U/2 t I(_t)HN (log(-t))" e-(n+l)t dt I),

and, by Lemma 4.1 in [5},

165

as n -+ 00,

(3.11)

Since

fJJm = (log n)"/n~+m/2

is an asymptotic sequence, in view of (2.12)

as n -+ 00. (3.12)

(3.13)

00

in I'.' L (_l)m Jm ;
m~O

{(log n)"/nHm /2}

(3.14)

as n ---+ 00.

The order of the terms Jm , given in (2.22), indicates that the result in
(3.14) can be improved to read

00

in I'.' L (_l)m Jm ;
m~O I(log n)" I

n~+m I as n -+ 00, (3.15)

which is identical with the statement of the theorem.

Remark 1. When ft = 0, the canonical form (1.2) reduces to the Darboux
condition and our asymptotic expansion (3.2) is equivalent to a recent result
given in Erd6lyi and Wyman [2}. To some extent our analysis is based on [2}.
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Remark 2. When fL is a positive integer and G(t) = l, the asymptotic
behavior of In was investigated by S. Narumi [4] who found the dominant
term of an asymptotic expansion with an error term. Narumi's method
divides the asymptotic formula into two cases according as Ais a nonnegative
integer or not a nonnegative integer. Our method makes no such separation
and the two cases are treated as one.

4. COMMENTS AND EXTENSIONS

From (2.22),

Jo r'oJ (-l~:~ tAl »1L L~o (~)(-log(n + I»-k poDk[r-1(l - A)] ;

{(log(n + I»-k}], as n~ 00, (4.1)

and

Hence, for any integer N ;:> 0

as n ~ 00. (4.2)

+ O((log(n + l»-N-1) + O(l/n)] (4.3)

as n ~ 00. Clearly, none of the terms of J1 can contribute to the asymptotic
expansion for In unless the infinite asymptotic expansion for Jo terminates
after a finite number of terms. The same will obviously be true for Jm ,

m ;): 1. Hence the general situation is

f, r'oJ G(I) (-log(n + 1»1' [~ (P-) Dk[r-
1
(l - A)] • {(l (+ l»-k}] (4.4)

n (n + I)A k::O k (-log(n + I»k' og n

as n~ 00.

For the special case fL a nonnegative integer, a more accurate asymptotic
expansion does exist. This is true because the infinite series expansions for
Jm all terminate. Returning to (2.18), the path of integration Yn can be
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replaced by the infinite loop with the introduction of a term that is exponen
tially small. Hence

i J(O+)
Jm~ 27T 00 (_t)Hm-1 (log(-t))" Pm((n + 1) t) e-(n+1)t dt

. d" J(O+)
Rj _1_ __ (_t)Hm-1 P ((n + 1) t) e-(n+!lt dt

27T dA" 00 m
(4.5)

From (2.17), (4.5) can be written

i d" [ 1 dm I f (0+)
Jm~ 27T dA" m! (n + I)Hm • dtm G(t + 1) 00 (_£O)A+m-1

. exp [-£0 (10g(tt+ 1) )] d£OU (4.6)

1 d" [dm I [t ]A+m1 ((n + 1)-,\-m )]
~ m! dA" dtm G(t + 1) log(t + 1) It- o T(l - A - m) .

The general form of (4.6) is

Jm ~ [(-log(n + 1))"/(n + l),,+m] Q,,((log(n + 1))-1), (4.7)

where Q,,(z) is a polynomial whose degree does not exceed /-'. In (3.2), there
is therefore no need to drop any of the terms, and the more accurate expan
sion is worth retaining.

The results thus far obtained, derived for a so-called canonical form,
allow a direct derivation of a more general result. Returning to (1.2), it will
now be assumed

F(t + 1) ,....., l: (_t)"m-1(log(-t))"mGm(t);
mEl

as t -+ 0 in -7T ~ arg(-t) ~ 7T, where I stands for either the finite set of
integers {O, 1,2,... , M} or the infinite set of integers {O, 1, 2, ...}. In (4.8),
each Gm(t) is regular at t = o. Hence for each fixed N E I,

N

F(t + 1) = l: (_t)"m-1 (log(-t))"m Gm(t) + RN(t), (4.9)
m-O

where

as t --+ O. (4.10)
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Hence, In of (3.1) becomes
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N

In = L f (_tym-1(log( -t))"m Gm(t)(t + 1)-n-l dt
m=O Yn

+ I RN(t)(t + l)-n-l dt.
Y"

As long as an integer N can be chosen so that

(4.11)

(4.12)

and RN(t) is sufficiently regular in the cut neighborhood I t I ~ Dn to replace
the circular path of integration by the straight line segments joining t = 0
to t = Dn , above and below the cut, then

I R (t)(t + 1)-n-l dt = 0 ( (log(n + I))"N ) as 11-+ 00. (4.13)
Y" N (11 + I)AN '

Finally, each term of the asymptotic expansion is of the canonical form
discussed in Section 3, and the asymptotic behavior of each term can be
determined as 11 -+ 00.

The choice of the factor (-t)Am rather than tAm in our general result was
dictated by a desire to provide direct application of (2.15). Clearly if the
natural factors in the expansion of F(t + 1) have the form tAm(log t)"m, it
would be possible to write t = eik7T(-t), tAm = eilC7TAm( -t)Am, and log t =

loge-t) + ihr, for some integer k. This would imply an awkward reexpan
sion in order that a direct application of the results of this paper be applicable
to the factor tAm(log t)"m. Rather than follow this course, it is recommended
that one recast the results of the paper using

(4.14)

as the basic integral. For any positive integer JL, one obtains by differentiating
JL times with respect to t\

(4.15)

and the corresponding exact expression when JL is a nonnegative integer is
replaced by an asymptotic expansion for all other values of JL. Obviously
everything can then be repeated to derive the analogous result when terms
of the form tA-1(log t)" are the natural factors to use in the expansion of
F(t + 1).
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5. EXAMPLE
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A typical example of a function which satisfies the conditions of our
canonical form (1.2) is provided by

F(t) = (1 - t)A-l [log(1 - t)!t]",

where ,\ and ft are fixed complex numbers.
However, only the special case

F(t) = [log(1 - t)!t]",

F(O) = ei1T", (5.1)

(5.2)
XJ

= " AI,L) t n
L. n '

n=O

will be used to compare our procedure with known methods of finding the
asymptotic behavior of Stirling numbers of the first kind. It will also be
used to illustrate that the final form of an asymptotic expansion so often
depends on the procedure which is used to develop the form.

As our general theorem shows

R:! _1_· r (t + I)-n-l F(t + 1) dt.
271" 'Yn

(5.3)

In applying our previous results, ,\ = 1, G(t) = (1 + f)-", and the asymp
totic expansion can be immediately obtained from (3.2). It is simpler however
to write

A~) R:! _1_· f [log(-t)]" (t + l)-n-"-l dt,
271" Itl~~n

(5.4)

and consider ,\ = 1, G(t) = 1 and z = n + fL + 1 as the asymptotic variable.
The results will apply even though ft may be a complex number.

Writing

A~'} R:! _i_ J [log(-t)]" exp [_! wt 12(lOg(t ~ 1) - t) I] r1n+,,+!lt dt
271" Yn 2 t I (5.5)

where w = (n + fL + l)t, we have seen that only the first term in the expan
sion of

exp [-~ wt 12(lOg(t ~ 1) - t) D= ~o Pm(w) t m (5.6)
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need be considered as long as fL is not a nonnegative integer. In this case

A("j F':::! _1_" J (log(-t))" e-(n+,,+llt dt
n 2TT'

Y,.

r-...J ei""[log(n + fL + 1)]" [I (fL) Die [rCA) sin TT'A]
(n + fL + 1) k~O k TT' .\-1

. (-log(n + fL + l))-k; {(log(n + fL + 1))-le}] (5.7)

as n ~ 00. The first two nonzero terms of (5.7) are given by

A("j = ei""[log(n + fL + 1)]" [ fL
n (n + fL + 1) log(n + fL + 1)

+ 0 ( (log(n +lfL + 1))3 )]

fL(fL - 1) T'(l)
(log(n + fL + 1))2

[ 1 (fL-l)r'(l) +o( 1 )]
x - log(n + fL + 1) (log(n + fL + 1))2

(5.8)

as n~ 00.

The stirling numbers of the first kind Snm have the generating function

(5.9)

with the obvious relation to the A~) given above by

(5.10)

when fL is a nonnegative integer.
Jordan [6, p. 161], gives the asymptotic result

IS~+" I r-...J ((n + fL - 1)!f(fL - l)!)[log(n + fL) + y]"-l, (5.11)

where y = -r'(1) is Euler's constant. The two results (5.8) and (5.11)
agree to the order indicated in (5.8). However, the procedures of the present
paper allow a much deeper result to be obtained when fL is not a nonnegative
integer.
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